Combining Classification with fMRI-Derived Complex Network Measures for Potential Neurodiagnostics

نویسندگان

  • Tomer Fekete
  • Meytal Wilf
  • Denis Rubin
  • Shimon Edelman
  • Rafael Malach
  • Lilianne R. Mujica-Parodi
چکیده

Complex network analysis (CNA), a subset of graph theory, is an emerging approach to the analysis of functional connectivity in the brain, allowing quantitative assessment of network properties such as functional segregation, integration, resilience, and centrality. Here, we show how a classification framework complements complex network analysis by providing an efficient and objective means of selecting the best network model characterizing given functional connectivity data. We describe a novel kernel-sum learning approach, block diagonal optimization (BDopt), which can be applied to CNA features to single out graph-theoretic characteristics and/or anatomical regions of interest underlying discrimination, while mitigating problems of multiple comparisons. As a proof of concept for the method's applicability to future neurodiagnostics, we apply BDopt classification to two resting state fMRI data sets: a trait (between-subjects) classification of patients with schizophrenia vs. controls, and a state (within-subjects) classification of wake vs. sleep, demonstrating powerful discriminant accuracy for the proposed framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Optimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps

Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...

متن کامل

Applying fMRI complexity analyses to the single subject: a case study for proposed neurodiagnostics.

Nonlinear dynamic tools have been statistically validated at the group level to identify subtle differences in system wide regulation of brain meso-circuits, often increasing clinical sensitivity over conventional analyses alone. We explored the feasibility of extracting information at the single-subject level, illustrating two pairs of healthy individuals with psychological differences in stre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013